Closing Tue, Jan. 12: 12.1, 12.2, 12.3
Closing Thu, Jan. 14: 12.4(1), 12.4(2)
12.4 The Cross Product

We define the cross product, or
vector product, for two 3-dimensional vectors,
$\boldsymbol{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\boldsymbol{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$,
by $\quad \boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=$
$\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \boldsymbol{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{k}$

Ex: If $\boldsymbol{a}=\langle 1,2,0\rangle$ and $\boldsymbol{b}=\langle-1,3,2\rangle$, then

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 2 & 0 \\
-1 & 3 & 2
\end{array}\right|=
$$

$$
(\quad-\quad) \boldsymbol{i}-(\quad-\quad) \boldsymbol{j}+(\quad-\quad) \boldsymbol{k}
$$

12.5 Intro to Lines in 3D

In order to describe lines in 3D, we use parametric equations. Here is an example of 2D parametric lines:

Ex: Consider the 2D line: $y=4 x+5$.
(a) Find a vector that is parallel to
the line. Call this vector \mathbf{v}.
(b) Find a vector whose head touches the line when drawn from the origin.
Call this vector r_{0}.
(c) We can reach all other points on the line by walking along r_{0}, then adding scale multiples of \mathbf{v}.

This same idea works to describe any line in 2- or 3-dimensions.

The equation for a line in 3D:

Find
$v=\langle a, b, c\rangle=\quad$ a vector parallel
to the line.
$\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ a position vector (i.e. $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line)

Then all other points on the line can be obtained by

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+\mathrm{t}\langle a, b, c\rangle
$$ which is sometimes written as:

$$
r=r_{0}+\mathrm{t} \boldsymbol{v}
$$

